On-line Bayesian Tree-structured Transformation of Hidden Markov Models for Speaker Adaptation

نویسندگان

  • Shaojun Wang
  • Yunxin Zhao
چکیده

This paper presents a new recursive Bayesian learning approach for transformation parameter estimation in speaker adaptation. Our goal is to incrementally transform (or adapt) the entire set of HMM parameters for a new speaker or new acoustic enviroment from a small amount of adaptation data. By establishing a clustering tree of HMM Gaus-sian mixture components, the nest aane transformation parameters for individual HMM Gaussian mixture components can be dynamically searched. The on-line Bayesian learning technique proposed in our recent work is used for recursive maximum a posteriori estimation of aane transformation parameters. Speaker adaptation experiments using a 26-letter English alphabet vocabulary are conducted, and the viability of the on-line learning framework is con-rmed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-line hierarchical transformation of hidden Markov models for speaker adaptation

This paper presents a novel framework of on-line hierarchical transformation of hidden Markov models (HMM’s) for speaker adaptation. Our aim is to incrementally transform (or adapt) all the HMM parameters to a new speaker even though part of HMM units are unseen in adaptation data. The transformation paradigm is formulated according to the approximate Bayesian estimate, which the prior statisti...

متن کامل

Online Bayesian tree-structured transformation of HMMs with optimal model selection for speaker adaptation

This paper presents a new recursive Bayesian learning approach for transformation parameter estimation in speaker adaptation. Our goal is to incrementally transform or adapt a set of hidden Markov model (HMM) parameters for a new speaker and gain large performance improvement from a small amount of adaptation data. By constructing a clustering tree of HMM Gaussian mixture components, the linear...

متن کامل

Online hierarchical transformation of hidden Markov models for speech recognition

This paper proposes a novel framework of online hierarchical transformation of hidden Markov model (HMM) parameters for adaptive speech recognition. Our goal is to incrementally transform (or adapt) all the HMM parameters to a new acoustical environment even though most of HMM units are unseen in observed adaptation data. We establish a hierarchical tree of HMM units and apply the tree to dynam...

متن کامل

Improved Bayesian learning of hidden Markov models for speaker adaptation

We propose an improved maximum a posteriori (MAP) learning algorithm of continuous-density hidden Markov model (CDHMM) parameters for speaker adaptation. The algorithm is developed by sequentially combining three adaptation approaches. First, the clusters of speaker-independent HMM parameters are locally transformed through a group of transformation functions. Then, the transformed HMM paramete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001